AI Transformation with ModelOps

Enterprise AI, ground truth, and the ‘corona effect’

By Stu Bailey

Nothing in our lifetimes has prepared us for what’s happening in our world today. We’ve certainly had our share of major catastrophes in the past 100 years — both natural and man made — but nothing matches the impact of the COVID-19 pandemic. We are living in a time when fundamental assumptions about how our societies function are being thrown out and re-written with blinding speed.

The degree of global disruption is unprecedented in scope and scale, and we’re still in the early phases. Given the confluence of medical, social, political, and economic factors, we have not yet reached the peak of the impact, and the world we’ll inherit as the storm tide recedes will be significantly changed, and changeable. This is not to suggest that “the end is nigh” or that all changes wrought by the pandemic will be bad. But the undeniable truth is that we are experiencing an unexpected and extreme test of our AI technologies and their ability to automate and improve our ability to make good decisions quickly in increasingly complex situations. With respect to AI, we are entering an especially critical phase.

The “truth” I’m focusing on here is what is known to data scientists as “ground truth”, who’s dictionary definition is “factual data as ascertainable through direct observation rather than through inference from remote sensing.” In data science circles, the term generally refers to the reality that underlies the data being fed into AI models in production, and the concern is around any differences between the current ground truth and that reflected in the data with which machine learning models are trained.

Most enterprises have not yet organized themselves around the principles of Enterprise AI in which the traditional business, actuarial, optimization models, etc are modernized to be driven by ML/AI algorithms and operationalized, automated, and governed at enterprise scale.  The notion of Enterprise AI highlights a certain “ground truth”: Models are very different from conventional software, and companies need to adjust accordingly if they’re going to be able to use AI effectively in a fast-changing world.

A new discipline is emerging in the large enterprise called ModelOps that, in ways analogous to (but different from) DevOps, combines process, technology and organizational alignment to enable models to move quickly from data science into production — without compromising visibility, operational control or governance. When implemented as an enterprise-wide capability accountable to the CIO, ModelOps enables organizations to ensure that they can get new and updated models into production as fast as the ground truth is changing — which as we now know can be much faster than we’d previously imagined. The alternative is to see AI investments squandered, or worse, to drive business decisions based on models that no longer reflect the world we live in. This is the “Corona Effect”, and those of us in the business of developing and using AI in the real world need to take heed.

For the moment, consider where the ground truth in your business has shifted (and will continue to shift) as the pandemic peaks, ebbs and returns us to a “new normal.” The ability to respond to these unanticipated and potentially dramatic shifts in your business’s operating conditions as they occur is the ultimate goal of Enterprise AI.

Read the Full Article

All ModelOp Blog Posts 

ModelOps Is The Key To Enterprise AI

ModelOps Is The Key To Enterprise AI

Jun Wu, Forbes – March 31, 2020 In the last two years, large enterprise organizations have been scaling up their artificial intelligence and machine learning efforts. To apply models to hundreds of use-cases, organizations need to operationalize their machine learning...

You Need ModelOps To Scale

You Need ModelOps To Scale

Jun Wu, Towards Data Science – April 29, 2020 As companies, particularly large organizations, scale up their models as a part of building an enterprise-wide pipeline, there’s an increasing need to operationalize the model development process. Similar to DevOps, models...

Using ModelOps, a financial services company scales out

Using ModelOps, a financial services company scales out

Mark Labbe, TechTarget – April 16, 2020 Exos, a provider of institutional finance services and vendor of a platform for B2B institutional finance, doesn't have a big staff, but it's getting bigger. The privately held firm, founded in 2018, has about 65 employees, and...

In the News: ModelOp Center V2 Release

In the News: ModelOp Center V2 Release

ModelOp Breaks the Pilot-to-Production Logjam for Enterprise AI with New Release of ModelOp Center GlobeNewswire, 31 March 2020   Real-time Analytics News Roundup for Week Ending April 4 RTInsights, 4 April 2020   ModelOp Announces New Release of ModelOp...

In the News: ModelOp Series A Funding

ModelOp Raises $6 Million in Series A Funding from Valley Capital Partners to Meet Increasing Demand for Foundational ModelOps Capabilities for Enterprise AI GlobeNewswire, 31 March 2020   Money Moves: March 2020 SDxCentral, 12 April 2020   ModelOp attracts...

Announcing Series A Funding

ModelOp Raises $6 Million in Series A Funding from Valley Capital Partners to Meet Increasing Demand for Foundational ModelOps Capabilities for Enterprise AI  New Funding Solidifies and Extends Leadership in Operationalizing AI and Machine Learning Models at...

Announcing ModelOp Center v2

ModelOp Breaks the Pilot-to-Production Logjam for Enterprise AI with New Release of ModelOp Center  ModelOp Center Version 2 Automates Model Deployment, Monitoring, and Governance, Providing Foundational ModelOps Capabilities for Enterprise AI CHICAGO—March 31,...

Forbes Articles: Enterprise AI by Stu Bailey

Forbes Articles: Enterprise AI by Stu Bailey

The Enterprise AI Challenge: Common Misconceptions January 15, 2020 Misconception 1 (of 5): Enterprise AI Is Primarily About The Technology January 31, 2020 Misconception 2 (of 5): Automated Machine Learning Will Unlock Enterprise AI February 27, 2020 Misconception 3...