
Category Requirement Description
Model Governance &
Management
suggested weighting: 40%

Model Implementation
Agnosticity

Supports the operationalization of all models, inclusive of:
- All Model Types: AI, ML, mathematical optimization, rules-based, etc.
- All Model Languages (and associated Frameworks): Java, Python, R, C/C++, Scala, Matlab, etc.
- All Model Execution Environments: Kubernetes/Docker, Java, C/C++, Matlab, SageMaker, Azure ML, GCP, Spark, etc.
- All Model Execution Locations: On-Prem, Cloud, Hybrid

Standard Model Definition Provide a consistent definition (and underlying persistence mechanism) of all the core elements that compose a
model, regardless of the language/framework, Data Science workbench, underlying infrastructure, or data platform
used.

Production Model Inventory Provide a centralized store for viewing, managing, and maintaining all models (post-development) across the
enterprise, regardless of the model type, framework, platform, or environment.

Custom Metadata Allow for extension of the core Standard Model definition with custom metadata, which may come from various
integrating systems or via user input. Custom metadata may be supplied for a model as a whole or for specific
snapshots of that model. The custom metadata must be available to be used in a Model Life Cycle to allow an
enterprise to define and enforce governance, technical, and business requirements that are specific to their
processes.

Model Registration Allow users to onboard their developed model into the ModelOps system by collecting the key elements that
compose a model. Model registration should be enabled via CLI, import from a git repository, or via model factory
plugins, such as a Jupyter or Rstudio plugin.

Model "Snapshots" ("Versions") Provide the ability to systematically take a snapshot of a model in time, including all of the model's source code,
artifacts, documentation, and other metadata. This snapshot must be immutable and maintained in perpituity for
long-term auditability. Each Production model must have traceability to a specific immutable snapshot. The
snapshot — and all of the associate metadata for that model snapshot — can be exported for reporting purposes.

Per Model Comprehensive
Audit Trail

Support full auditability for each and every version of a model. Capture each step of the entire process to deploy a
model to production, including all approvals, promotions, and other operational controls; as well as all steps
involved in running on-going production operational controls, monitors, and metrics.

Model Audit Report Ability to generate, as required, an Audit Report (document) that provides a detailed history of the model, including
all steps in the model life cycle, as well as related metadata, artifacts, documentation, and test results.

Model Reproducibility Allow for rapid systematic reproduction of training, evaluation, and/or scoring of a particular model version,
especially of models that are currently or previously deployed in Production. The specific version of the relevant
code, artifacts, and other model assets must be used to conduct the reproducibility test.

This document is an example RFP for addressing ModelOps (and MLOps) functional requirements. It is the result of interviews with several industry experts and analysts.

ModelOps (and its MLOps subset which focus on ML models only) is a key capability that is required for successful AI/ML model operations once models have been
developed. It is a discipline that is separate and apart from model development. Industry experts and analysts are recognizing that model development and model
operations are different disciplines, requiring different capabilities, tools and even teams. Gartner, in a recent article, states, “Platform independence: AI pipelines span
multiple environments from developer notebooks to edge to data center to cloud deployments. A true ModelOps framework allows you to bring standardization and
scalability across these disparate environments so that development, training and deployment processes can run consistently and in a platform-agnostic manner."
Gartner report "Innovation Insight for ModelOps", Farhan Choudhary, Shubhangi Vashisth, Arun Chandrasekaran, Erick Brethenoux. 6 August 2020.

ModelOps RFP Requirements

Continuous Compliance
Checking - Define Rules

Ability to define — via decision tables — specific conditions in which a model must operate to be within
compliance. Must be able to define the rules on a per-model basis which are persisted, maintained, and
orchestrated with each and every version of a given model. These rules must be able to incorporate custom
metadata for a given model, which may have been pulled in automatically via an MRM/compliance/other
governance system.

Continuous Compliance
Checking - Enforcing Rules

Automated enforcement of all compliance/governance rules that have been defined on a per model basis. Breach of
any particular rule can trigger alerts/notifications as dictated by the Model Life Cycle.

Interpretability Integration Integrate with leading frameworks (Shap, KLime, etc.) to provide a consistent and automated approach to
identifying feature importance for models for a given version of a model.

Ethical Fairness/Bias IntegrationIntegrate with leading frameworks (Aequitas) to measure and monitor a model's fairness in providing positive
outcomes for all protected and/or sensitive classes.

Model Artifact Management Collect and manage all model "artifacts" with the model metadata as part of the "Standard Model Definition" for the
registered model. Depending on the type of model that the data scientist uses, the "model training" will result in a
set of outputs, which can be coefficients, weights files, binary objects, etc. These are critical parts of the "model" and
therefore must be managed in conjunction with the model code. Additionally, the artifact management capabiltiy
must integrate with common file/binary artifact storage mechanisms such as an Object Store (S3) to provide for
scalability and manageability, while also allowing an enterprise to leverage their existing IT investments.

Model Documentation
Management Integration

Ability to persist model-specific documdntation and/or link to existing content management systems that contain
model documentation. Documentation should be snapshotted with all other model assets such that there is an
audit trail to the specific version of the documentation for that version of the model.

Dependency Management
Integration

Manage the list of frameworks, libraries, and other dependencies that are required to execute a given model. While
the actual libraries are typically managed in an existing repository (e.g. Artifactory), the ModelOps capability needs
to manage — with each version of the model — the exact libraries/frameworks — and the version of the library —
for the model. Ensure that the model is deployed to an available execution context that has the required libraries to
run the model.

Source Code Management
Integration

Integrate with the enterprise's standard for source code management (Bitbucket). Associate details of the model's git
assets as metadata with the standard model definition.

Test Results Management Persist all instances of tests/metrics that have been executed on a per-model basis, regardless of the type of model
or the platform upon which it executes. A "record" of a test/metrics job should be tied to an immutable snapshot of
a model for history and auditability.

Associated Models Ability to define associations between models, which may be focused on reusable monitoring "models" (e.g. drift
models) across multiple models; or could be associating multiple models in a parent child or linked ensemble
approach.

Model Orchestration
suggested weighting: 30%

Model Life Cycle (MLC) Design Ability to design and build holistic Model Life Cycles (MLC's) that incorporate business, technical, and
compliance/governance requirements across the entire life of a model to allow orchestration and management of
the entire AI Governance workflow, from registration to testing, promotion, business approvals, governance
approvals, technical approvals, deployment, monitoring, improvement, and eventual retirement. Must provide the
ability to create different Model Life Cycles (MLC's) for different groups, classes of models, or even on a per model
basis.

Model Life Cycle (MLC)
Integration

Ability to integrate with existing operational systems (e.g. Production Support CR/IM ticketing, alerting systems, etc.)
and with existing Governance systems (e.g. MRM/Compliance systems). The integration must be systematic (via
API's/other) to allow for automation of the overall Model Life Cycle. Must provide the ability to systematically
collect information/metadata from the integrating systems and persist as metadata with the specific version of the
model.

Model Life Cycle (MLC)
Automation

Manage and automate the entire life cycle of a model — from model registration to testing, promotion, reviews,
approvals, etc. Integrate with the underlying standard IT systems (ticketing, security scanning, etc.),
MRM/compliance systems, and other AI Governance processes/systems to manage and orchestrate the overall AI
governance workflow. Additionally, allow for the creation of custom MLCs to cater to the differing needs of each
team, business unit, or even types of models.

Model Life Cycle (MLC) Lineage Collect and persist each step in the model’s life cycle for full auditability for each and every version of a model. This
includes all of the steps taken to deploy a model to production, including all approvals, promotions, and other
operational controls; as well as all steps involved in running on-going production operational controls, monitors,
and metrics.

Model Life Cycle (MLC) Reusable
Operational Patterns

Built-in customized Model Life Cycle definitions, which are prepackaged automated MLCs to allow for reusability
across the enterprise for multiple use-cases. These include MLC's for model registration, model approvals and
operationalization, on-going compliance enforcement, on-going comprehensive monitoring, production issue
remediation, etc. These MLC's specifically focus on enterprise requirements for compliance enforcement as well as
remediation paths for production operational or compliance issues.

Model Approvals
(technical, business and
compliance)

Automate the specific approval process(es) required to get a model into business. Integrate with the enterprise's
standard change and incident management systems (e.g. ServiceNow) as well as task ticketing systems (e.g. JIRA),
and Model Risk Management (MRM)/Compliance systems, to automate and track approvals across all business, data
science, operations and IT teams. These approvals must be added as metadata to the model snapshot for
traceability.

Unencoded Thresholds
Definitions

Ability to define — via decision tables or other rules — specific thresholds within which a model should operate for
various points in its Model Life Cycle. For example, thresholds may be set for matching compliance rules back to
statistical performance to provide clear but comprehensive rules for operating the model within the bounds of the
compliance and business requirements. Thresholds definitions do not require programming skillset to be decoded.

Model Compliance with
Security Standards

Integrate with enterprise security scanning software (e.g. SonarQube) and/or code scanning (e.g. Veracode) to
streamline operationalization of a given model. Additionally, allow for automation of the security scanning process
as part of a given Model Life Cycle.

Support for multiple model
execution platforms
("runtimes")

Integrate with multiple model execution (DSML) platforms, providing automated orchestration of jobs, deployment,
and monitoring. The integration should occur regardless of the underlying framework (scikitlearn, R, xgboost,
TensorFlow, pytorch, etc.) and language (R, python, Scala, C, etc.). The capability should support all existing models
— whether they are machine learning, statistical, or even rules-based and regardless of where the model
execute: Cloud, on Prem, Hybrid.

Support for multiple modes of
scoring: Batch,
Request/Response, Streaming

Supports batch, request/response (e.g. REST), and streaming model execution across platforms. Pending the
runtime's capability, switching of execution modes should be possible without changing the underlying algorithm
(the “math”). Support switching of scoring modes based on the current stage of model development without
changing the model's math: e.g. during early development, a data scientist may want to quickly test using a REST
deployment; however, during testing, UAT, and production, they actually need to execute the model in batch due
to data volumes.

Job Orchestration & Monitoring For all models in the ModelOps production model inventory, provide overarching job orchestratration and
monitoring, regardless of the model execution platform. In particular, a "record" of a job — and any available status,
metrics, and results of that job — should be tied to an immutable snapshot of a model for auditability.

Alerting and Automated
Notifications

Provide ability to automatically raise alerts and notifications based on model-execution errors, issues from model
compliance/other monitoring, or from specific actions/steps in the model life cycle. Typically these alerts are
handled by orchestrated remediation paths that are defined in a model life cycle (MLC), and would be tied to
thresholds (see below) to allow for clear, but comprehensive, orchestration of when alerts are triggered. The
ModelOps capability should be flexible to integrate with existing operational alerting and/or production ticketing
systems to enable L1 support to provide 24x7 production support for all models across the enterprise.

ModelOps Life Cycle KPI /
Process Monitoring

Collect and aggregate detailed metrics about Model Life Cycle execution across the enterprise, including specific
times for each step in a Model Life Cycle, allowing for understanding of where there are bottlenecks in the process
so that they can address accordingly.

Model Monitoring
suggested weighting: 15%

Business Monitors Business value tracking monitors with integration to automated thresholds and alerting. Must allow for defining
and uploading custom business value monitors for different models.

Model Specific Monitors Enable the registration, orchestration, and tracking of comprehensive model monitors for all Production Models
and/or Production candidates, including:
- Data Drift Monitoring
- Volumetric Monitoring
- Model Concept Drift Monitoring
- Statistical Performance Monitoring

Compliance Monitors Enable the registration, orchestration, and tracking of comprehensive compliance-focused monitors and controls
for all Production Models and/or Production candidates, including:
- Characteristic Stability
- Population Stability Index
- Rank Order Break
- Ethical Fairness Drift

Service Health Monitor
Integration

Support for integrating with existing infrastructure monitoring and application monitoring systems (e.g. APM tools),
as well as model execution platform systems (e.g. SageMaker, Spark) to collect specific service health information.
This includes the ability to answer the following questions for all "production" models used for business
decisioning: is the model running successfully? is the latency or job duration within SLA? are there any issues
returning results to the calling application? The ModelOps capability should not replace the existing data pipeline
monitoring tools, but rather pull the requisite information from the existing systems to obtain a holistic view of the
health/status of the production model. The ModelOps capability must be able to evaluate the metrics obtained
from the integrating system against model-specific thresholds and tie into the orchestration and alerting system
listed above.

Data Pipeline Monitor
Integration

Support for integrating with existing data pipeline monitoring capabilities to collect model-specific pipeline
information. The ModelOps capability should not replace the existing data pipeline monitoring tools, but rather
pull the requisite information from the existing systems to obtain a holistic view of the health/status of the
production model. The ModelOps capability must be able to evaluate the metrics obtained from the integrating
system against model-specific thresholds and tie into the orchestration and alerting system listed above.

Custom Metrics Monitoring Allow a data scientist or ModelOps engineer to define custom statistics to be captured about the model.
Model-Specific Thresholds The user must be able to set model-specific thresholds to evaluate if the monitoring metrics are within the expected

range. Typically, this includes comparisons to baseline data (e.g. compare a current window of production inference
requests to the training data input feature distribution). Per above, the system must be capable of triggering
automated alerts if thresholds are exceeded.

Orchestrated Issue Resolution Allow for defining and implementing automated workflows to orchestrate the various "remediation paths" that are
required to address any issue or warning that arises from the aforementioned monitors. These remediation paths
may differ based on the type of model, the risk classification, type of issue, severity of issue, etc. The ModelOps
orchestration capability must be able to intelligently and automatically process each issue or warning that is
surfaced based on the breach in thresholds, and ensure that the issue/warning is taken to resolution by following
the prescribed remediation path.

Champion/Challenger Allow for the comparison of the current "champion" production model against a proposed “better” model, using a
variety of statistical and technical performance metrics (e.g. AUC, RMSE, F1/F2, ROC Curve, Confusion Matrix).

Visualization &
Dashboarding
suggested weighting: 5%

ModelOps Console A robust ModelOps Console that provides the ability to manage all production models, Model Life Cycles, and
model runtimes across the enterprise, as well as detailed model metrics such as statistical metrics, drift metrics, and
bias metrics.

Executive Dashboard The ModelOps capability should provide a user friendly, unified view of all "production" models used for business
decisioning with a quick view (red/green/yellow stoplight) into the adherence to business,
infrastructure/operational, data, statistical, and risk KPI's for each model. The dashboard should allow for groupings
based on organization/model category and drill down into each model.

Risk/Compliance Dashboard The ModelOps capability should provide a user friendly view of various risk and compliance measures for all
models across the enterprise. These measures include a view of (1) all "production" models used for business
decisioning based on risk classification (2) where models are in their risk / compliance review cycle (3) any current
risk / compliance issues occurring in production (4) upcoming risk / compliance reviews for all models across the
enterprise.

Visualization: BI tools
integrations

Ability to integrate with BI tools to create custom reports to gain visibility of aggregated and detailed views on
model performance against statistical, business, and risk thresholds.

ModelOps Executive BI
Dashboard Templates

Out-of-the-box ModelOps BI dashboard templates that can be used and customized for executives that are
accustomed to using BI visualizations for KPIs and Scorecards.

Security
suggested weighting: 5%

Authentication/Authorization Integration with the enterprise's oauth2 and LDAP/AD systems for authentication, leveraging existing oauth/ldap
systems, processes, and AD/LDAP group structure to for authentication.

Role-Based Access Control Role-based access control to expose functionality according to the user's role (e.g. Admin vs. Non-Admin), which
should be obtained based on group membership within the organization's AD/LDAP.

Multi-Tenancy (Group-based isoloation)Group-based access control to isolate which groups/teams can see specific models, model assets, runtimes with
specific deployed models, test results, integrating with the enterprise's oauth2 and LDAP/AD systems to obtain the
associated group entity information.

Model Privacy All privacy aspects for the Model including "policy that the model was built, retrained, validated with data that
adhered to the corp data privacy requirements" (this can be call out to Data Governance); assurance that the
production scores adhere to data privacy policy (e.g. opaque IDs in the scores); when there is a one to one
relationship of model to person (e.g. individual customer behavior model) that the appropriate policies are
enforced.

Non-Functional
Requirements
suggested weighting: 5%

Product Architecture ModelOps capability should be designed to be flexible and extensible, using a modern micro services architecture,
to allow enterprises to customize and integrate the ModelOps services into existing systems, platforms, and
processes.

Infrastructure Ability to run Software anywhere: on Cloud, on Prem, Hybrid.
Systematic Access (API's) Provide a comprehensive API to allow enterprises to create custom Model Life Cycles or custom integrations into

consuming business applications. Expose core ModelOps services as RESTful API's allowing enterprises to easily
customize the use of the ModelOps solution to their specific business requirements.

Ownership Allow for definition of ownership for model operationalization, by providing a console for 24x7 model
management in production, and with visibility into the model path to/in production with pre-defined ownership of
responsibilities, triage and remediation processes.

Localization Support for the linguistic, technical, and overall cultural requirements for all regions of a global enterprise

