ModelOps for Data Scientists

Develop your models with the freedom to choose the tools you love,
ModelOps softwares operationalize them, and you see the real impact on the business.

Learn More About ModelOps

ModelOp gives data scientists flexibility while allowing them to demonstrate the value of their work

Data scientists need a repeatable method to prepare models for production using the tools in their personal toolkit and from the workbench of their choice. This method must include ways to monitor drift of production data, easily backtest models against responses from previously scored data, and easily retrain the model as necessary.

Flexibility of language, workbench, IDEs, and development tools

Regardless of how the model was developed, every model needs to be tested, deployed into production, backtested, and retrained. We can help integrate this cycle with any language, workbench, IDE, and development tool a data scientist wants to use.

Monitor statistical assumptions

A data scientist only has the training data that is available at the time the model is created. If new production data has statistical properties that violate the assumptions made at the time of creation, the data scientist should be alerted so that the model can be retrained or assumptions updated.

Transparency of model efficacy

Data scientists should have the opportunity to demonstrate how effective their models are in impacting their business’ bottom lines. One good way to demonstrate this is to routinely backtest the model as new responses to previously scored data becomes available.

Compare and contrast models

The joy for every data scientist is deepening their understanding of their data and developing new, better models which reflect that better understanding. There should be a way to easily demonstrate that a new model is an improvement over its predecessor.

How Your Work Will Be Transformed

Data scientists are able to develop models in any of the market-leading workbenches, iterate through research on the historical data set, and then quickly operationalize the model. ModelOp sets up a repeatable system for backtesting as well as a dashboard business leaders can use to interact with the model.


How ModelOp Is Unique

Models are unique as software assets in that they are developed by teams with unique mathematical, statistical, machine learning, and AI knowledge. ModelOp allows teams across a business to modularize these assets into reusable pieces as well as demonstrate their efficacy to business owners.

Explore the Impact of ModelOps

We have the experience and solution to help you harness the power of AI/ML at scale that will boost your core processes. Let’s create a unique solution together.

Contact us for more information