AI Transformation with ModelOps

Want To Measure Your Enterprise AI Initiatives? Start With Model Debt

Stu Bailey, Forbes – June 30, 2020

There’s a growing awareness of the widening gap between the ability of data scientists to create models and the ability to deploy them in production. This has driven growing interest in ModelOps, which is the enterprise-wide discipline that enables organizations to scale and govern their AI initiatives by managing models and their life cycles from creation through retirement. But until now, there have been few objective metrics that organizations can use to gauge the effectiveness of their ModelOps programs, or indeed their AI initiatives. The concept of model debt helps to address that need.

Read the Full Article

All ModelOp Blog Posts 

Top 10 Big Data Startups to Watch in 2020

Top 10 Big Data Startups to Watch in 2020

Kamalika Some, Analytics Insight – July 3, 2020 Data is growing by leaps and bounds, the convergence of extremely large data sets both structured and unstructured define Big Data. The increasing awareness of the Internet of Things (IoT) devices among organizations and...

Enterprise AI, Regime Change, and the ‘Corona Effect’

Enterprise AI, Regime Change, and the ‘Corona Effect’

Stu Bailey, Mission Critical – July 2, 2020 To say that the COVID-19 pandemic has turned our world upside down is an understatement, made more so with each passing day. The impacts on daily lives — lockdowns, masks, the threat of grave illness, extraordinary economic...

Model Risk Management in the Age of AI

Model Risk Management in the Age of AI

Stu Bailey, insideBIGDATA – June 30, 2020 In this article, Stu Bailey, Co-Founder and Chief AI Architect of ModelOp, discusses how financial services companies can easily validate multiple AI/ML models and reduce ML project costs by 30% through automation. ModelOps...

ModelOps Is The Key To Enterprise AI

ModelOps Is The Key To Enterprise AI

Jun Wu, Forbes – March 31, 2020 In the last two years, large enterprise organizations have been scaling up their artificial intelligence and machine learning efforts. To apply models to hundreds of use-cases, organizations need to operationalize their machine learning...