Company

Kicking Off 2019: The Year of Model Operations

kicking off 2019Welcome to 2019 – a year we here at ODG are calling “The Year of Model Operations”.  Throughout the year, we will be bringing a wide array “how to’s”,  customer and partner case studies and use cases – examples of what it means to execute machine learning strategies into production.  It’s an exciting time, as we’ve seen the shift of the market from “what is model operations” to “how do I do model operations”.

 

I wanted to start with a look back at three important articles published by Gartner to set the stage for what’s to come.  The first article was published in Q4, by Kasey Panetta, titled “Gartner Top 10 Strategic Technology Trends for 2019”, on gartner.com.  The other two research notes were published by Erick Brethenoux and others also in Q4, titled “Predicts 2019: Analytics and BI Strategy” and “How to Operationalize Machine Learning and Data Science Projects”.  It’s a combination of these three that are particularly interesting.

 

In Kasey’s article, she outlines some very powerful secular trends that will see significant implementations in 2019.  Of the 10 included, three are very specifically related to the adoption and implementation of machine learning and AI:  Augmented Analytics, AI-Driven Development and the Empowered Edge.  Each of these trends, at a very fundamental level, will rely on a host of ML and AI models to provide value.  Importantly for any of these trends to be highly adopted, it implies those ML and AI models will be deployed and supported in production, a topic we call model operations.  In contrast, let’s look briefly at Erick’s article from earlier last year.  In his research, Erick notes “More than half of Data Science Projects are not Fully Deployed”.   The fact that many ML projects are not deployed implies there is a large gap looming to achieve some of the key trends identified by Kasey.  In addition, Erick and team note in their 2019 Predictions that organizations “Do not deploy analytic tools without first ensuring that processes are established to drive operationalization of the results, and that the business culture is receptive to analytic insight. “

 

Based on our customers, and the work we have in the Fortune 500, it’s clear this model deployment gap is real.  Importantly, the gap exists in complete alignment with the Gartner research:  there is both a process gap, and a technology gap.  We’ve been engaged by banks, insurance companies, retailers and many others to close this gap, and help them gain real competitive advantage and leadership positions in leveraging ML to impact their business. 

 

As a provider to the space, what’s exciting is that the market, regardless of customer or use case, exhibits common patterns that cause these challenges.  And if we can find common patterns, we can solve for them.  A few of these patterns have emerged, and 2019 is indeed the time to solve for them:

  1. Cloud infrastructure is here to stay, and teams need to be able to deploy ANY machine learning model into any infrastructure chosen, and take advantage of the cost and flexibility the cloud provides.
  2. Data science, quant, and analytics teams must be free to choose any combination of model creation tools, languages and packages they need to create the best model for their use cases.
  3. Enabling critical mathematical assets to be operated safely, at scale, by traditional DevOps teams is required to put models into production.
  4. Processes to support model operations, including a Model Development Life Cycle (MDLC), are required to support the larger enterprise vision of transformation via data and ML.

 

2019 is the year of the model operations.  The good news is that we’ve seen our customers solve the problems, generating tremendous value from their ML investments.  Combining FastScore and the MDLC approach solves for fundamental model operations challenges, enabling several of the key trends that Gartner, and our customers, are aiming for.  Over this year, the team here at ODG will be working to share in depth “how you do it” examples, all based on our experience with our customers. Please stay tuned for both new content and customer stories to come.

All ModelOp Blog Posts 

ModelOps Is The Key To Enterprise AI

ModelOps Is The Key To Enterprise AI

Jun Wu, Forbes – March 31, 2020 In the last two years, large enterprise organizations have been scaling up their artificial intelligence and machine learning efforts. To apply models to hundreds of use-cases, organizations need to operationalize their machine learning...

You Need ModelOps To Scale

You Need ModelOps To Scale

Jun Wu, Towards Data Science – April 29, 2020 As companies, particularly large organizations, scale up their models as a part of building an enterprise-wide pipeline, there’s an increasing need to operationalize the model development process. Similar to DevOps, models...

Enterprise AI, ground truth, and the ‘corona effect’

Enterprise AI, ground truth, and the ‘corona effect’

By Stu Bailey Nothing in our lifetimes has prepared us for what's happening in our world today. We've certainly had our share of major catastrophes in the past 100 years -- both natural and man made -- but nothing matches the impact of the COVID-19 pandemic. We are...

Using ModelOps, a financial services company scales out

Using ModelOps, a financial services company scales out

Mark Labbe, TechTarget – April 16, 2020 Exos, a provider of institutional finance services and vendor of a platform for B2B institutional finance, doesn't have a big staff, but it's getting bigger. The privately held firm, founded in 2018, has about 65 employees, and...

In the News: ModelOp Center V2 Release

In the News: ModelOp Center V2 Release

ModelOp Breaks the Pilot-to-Production Logjam for Enterprise AI with New Release of ModelOp Center GlobeNewswire, 31 March 2020   Real-time Analytics News Roundup for Week Ending April 4 RTInsights, 4 April 2020   ModelOp Announces New Release of ModelOp...

In the News: ModelOp Series A Funding

ModelOp Raises $6 Million in Series A Funding from Valley Capital Partners to Meet Increasing Demand for Foundational ModelOps Capabilities for Enterprise AI GlobeNewswire, 31 March 2020   Money Moves: March 2020 SDxCentral, 12 April 2020   ModelOp attracts...

Announcing Series A Funding

ModelOp Raises $6 Million in Series A Funding from Valley Capital Partners to Meet Increasing Demand for Foundational ModelOps Capabilities for Enterprise AI  New Funding Solidifies and Extends Leadership in Operationalizing AI and Machine Learning Models at...

Announcing ModelOp Center v2

ModelOp Breaks the Pilot-to-Production Logjam for Enterprise AI with New Release of ModelOp Center  ModelOp Center Version 2 Automates Model Deployment, Monitoring, and Governance, Providing Foundational ModelOps Capabilities for Enterprise AI CHICAGO—March 31,...